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NCMENCLATURK 

A wing area of aircraft 

constant defined on page 22 

U 

V 

V r 

control variable 

c1 

c2 

cD 

cL 
D 

velocity 

constant defined on page 22 reference velocity 
defined on page 3 

drag coefficient 

lift coefficient 
W 

X 

weight of aircraft 

range of coordinate 
drag, distance 

altitude coordinate; variable 
defined by equation (3.27) 

Y 
D1 

D2 

g 

length of initial vertical subarc 

length of final vertical subarc Y 

Y 

? 

A 

5 

PO 

T 

state variable 

acceleratioq due to gravity, 
32.2 ft/sec 

flight path angle 

dimensionless altitude 
H Hamiltonian function 

defined on page 9 

thrust/weight 

Lagrange multiplier 

dimensionless range K 

x constant defined on page 21 reference density 

lift dimensionless time L 

m mass 

(thrust minus drag)/weight Subscripts r 

1 initial point 

f final point 

constant defined on page 21 S 

thrust minus drag 

independent variable 

thrust Notation 

constant thrust A prime denotes differentiation 
with respect to non-dimensional 
time. 

A "-P sign refers to conditions 
just after a corner. 

TO 

dimensionless velocity U 

U velocity defined on page 22 

intermediate velocity defined 
on page 9 

terminal velocity 

A 'l-u sign refers to conditions 
just before a corner. 
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ABSTRACT 

The methods of the calculus of variations are used in this paper 
for the analysis and solution to the problem of determining minimum 
time aircraft trajectories between two fixed points in range-altitude 
space. The analysis is confined to an aircraft of constant weight with 
the thrust and drag relationships given as specified functions of 
velocity and altitude. No constraints are imposed on the possible ak- 
craft maneuvers. 

Under these circumstances, it is shown that the nature of an 
optimal solution to a given point in range-altitude space falls into 
one of two distinctly different categories. The solution is either of 
a continuous nature with the resulting trajectory being smooth or the 
solution is of a discontinuous nature with the resulting trajectory con- 
taining corners. An analytical solution is presented for the discontin- 
uous case. 

A complete solution is obtained for the particular example of an 
aircraft with drag proportional to the square of velocity and constant 
thrust. It is shown that in this case, for a thrust to weight ratio 
greater than 1.5, only continuous time optimal solutions are obtained 
to each point in range-altitude space. However, for a thrust to weight 
ratio less than 1.5 both continuous and discontinuous solutions are 
needed to reach every point in range-altitude space. A co-n boundary 
line in range-altitude space is obtained which separates the region of 
points obtained using continuous solutions from the region of points 
obtained using the discontinuous solutions. The numerical procedure 
used for obtaining the continuous solutions is based on a flooding tech- 
nique. 

vi 



SECTION I 

INTRODUCTION 

The minimum time to climb problem in aircraft flight mechanics has been 
discussed extensively in the literature by several authors (1, 2, 3). This 
problem has been popular not only because it is of practical interest but 
also because of the fact that a relatively simple solution is possible if a 
basic model aircraft, assumed to be of constant weight, with thrust and drag 
given as specified functions of velocity and altitude, is used (i.e., an 
aircraft with a fixed throttle setting with no induced drag, or an aircraft 
with induced drag but with the additional assumption that lift is approxi- 
mately equal to weight throughout the trajectory). The minimum time to 
climb problem is generally treated as a two point problem in velocity- 
altitude space. By definition the final range point for a time to climb 
problem is left free. Under these circumstances optimal solutions are char- 
acterized by the subarc nature of the resultant flight path. 

Variations to this basic problem are made by relaxing certain assump- 
tions about the aircraft and about conditions specified at the initial and 
final points. Solutions to the varied problems have been obtained by 
Hermann (4) using the calculus of variations. 

Another problem which is seldom discussed but which is closely related 
to the minimum time to climb problem is the problem of determining the 
minimum time aircraft trajectory between two fixed points in range altitude 
space. By requiring that the final range be specified, the entire nature 
of the solution changes from that of the time to climb problem. The analysis 
and partial solution to the problem of determining optimal trajectories 
between two fixed points in range-altitude space using the calculus of vari- 
ations has been previously discussed by Vincent (5). The material presented 
in this paper represents an extension of this work for a minimum time pay 
off function and is devoted to the complete analysis and solution of this 
problem for a specific model aircraft. 

In order to make the problem of minimum time between two fixed points 
in range-altitude space tractable analytically, the basic model aircraft 
will again be assumed to be of constant weight with thrust and drag given as 
specified functions of altitude and velocity (induced drag will be neglected). 
In the ensuing analysis, solutions will be obtained for a model aircraft 
with very simple thrust and drag relations. By obtaining exact solutions to 
a simplified problem, rather than concentrating on an approximate solution 
to an exactly formulated problem, it is felt that the significance and physi- 
cal meanings associated with the optimal solution for the aircraft operating 
under gravitational, thrust, lift and drag forces can be more readily under- 
stood and exploited. 

Flight trajectories which satisfy the necessary optimizing conditions 
as set forth in the next section will be referred to as optimal trajectories. 

1 



SECTION II 

TEE Two POINT MINIMUMTIME PROBLEM 

Equations of Constraint 

The model aircraft and environment. - The analysis of the time-optimal 
performance for an aircraft will be confined to a vehicle assumed to oper- 
ate in a plane under the forces as shown below. 

Altitude, y 

FIGURE 2.1 - APPLIED FORCES 

Where: 

T - thrust. The thrust force will be assumed to act in the direction 
of the flight path. For the purpose of analysis, the throttle setting is 
assumed to be fixed. Therefore, thrust will be represented as a function of 
velocity, v, and altitude, y. The illustrative example solutions given in 
Sections III and IV are obtained for thrust equal to a constant. 

D - Drag. The drag force will be assumed to act opposite in direction 
to the inertial velocity vector, v (no relative wind). For the purpose of 
analysis, induced drag will be neglected. Drag will be represented as a 
function of velocity and altitude only. The illustrative example solutions 
given in Sections III and IV are obtained for drag proportional to the 
square of velocity. 

L - Lift. The lift force will be assumed to act perpendicular to the 
flight path (no relative wind). No bounds will be put on the values of lift 
needed to fly any given trajectory. By assuming the lift to be unbounded, 
no analytical representation of the lift force will be needed for analysis. 
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mg - weight of the aircraft. The gravitational force will be assumed 
to act perpendicular to the horizontal reference line. The weight of the 
aircraft will,be assumed constant in the analysis. 

For a high speed aircraft, the drag and thrust would be expressed more 
properly in terms of Mach number. However, for simplification in order to 
make the comparison between high speed and low speed flight more direct, the 
atmosphere will be assumed to be isothermal. In this case, drag and thrust 
become velocity dependent for both high and low speed flight. 

The non-dimensional eauations of motion. - Let T(v,y) - D(v,y) = R(v,y). 
Then the equations of motion in the tangential and normal directions may be 
written from Figure 2.1 as follows: 

m+ - R(v,y) - mg sin y, (29 1) 

mv+=L- w3 cos Y, (2.2) 

with the following kinematical relations applicable between the range- 
altitude variables, 

ir - v CO8 y, (2.3) 

5 = v sin y. (2.4) 

These four equations are written using the assumptions already listed, 
and represent dynamic bounds on the possible motion of the aircraft. Since 
no constraints or bounds are to be imposed on the lift, and since lift is 
not contained in equations (2.1), (2.3), and (2.4), then equation (2.2) is 
uncoupled from the other equations and may be dropped in the ensuing analysis. 
Equation (2.2) will be used to evaluate lift requirements once an optimal 
trajectory is determined. 

With the assumption that the mass is constant, the remaining three 
equations contain four dependent variables, x, y, v, and y so that one 
degree of freedom remains for control. In this case the control variable is 
y and the three state variables are x, y, and v. No further constraints 
will be imposed on the aircraft. 

In order to compare minimum time performance between various aircraft, 
the above equations will be put into dimensionless form. If a reference 
velocity is defined by the velocity of an aircraft in steady level flight at 
CL = 1 and given by 

V2+=f, 1: 
0 

(2.5) 

where p. = sea level or any reference density, 
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and A - wing area of the aircraft, 
then the following non-dimensional parameters may be defined: 

non-dimensional velocity U = v/v,, 

non-dimensional range t - Bx/vr2, 

non-dimensional altitude '1 - 14Y/vr2, 

non-dimensional time 7 - gt/vr, 

non-dimensional T-D r(u,C) - Rhg. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

In terms of these dimensionless variables equations (2.1), (2.3) and 
(2.4) become 

u' - r(u,t) - sin y, (2.11) 

5’ - u COB y, (2.12) 

‘1’ = u sin y. (2.13) 

The prime denotes differentiation with respect to the non-dimensional 
time, 7. 

The Necessary Optimal Conditions 

The Problem of Bolza. - A minimum time trajectory subject to the con- 
straints given by equations (2.11) - (2.13) represents a special case of the 
problem of Bolza from the calculus of variations. The solution may be 
obtained from the optimizing conditions as given by this theory which are 
briefly sunrmarized below. 

A problem of Bolza is one which minimizes a sum of the form 

tf 1 - 1 . . . n 
20 ilYyif' t1, tf) + s f CIiY'kY t, dt, k - 1 . . . m 

5 

(2.14) 

subject to differential equations as constraints. For problems in flight 
mechanics constraints usually can be expressed in the form 

dY i=O(Y dt Ii l Yn,u,/), (2.15) 

where Y i represents n state variables and U k represents m control variables, 
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and t represents the independent variable. By forming the Hamiltonian func- 
tion, 

Ii-k.9 -f, ii 
(2.16) 

the optimizing conditions from the calculus of variations for the problem of 
Bolza may be written as follows: 

ax dxi State Variable Euler Equations: r + dt * 0. 
1 

(2.17) 

Control Variable Euler Equations: a- 0. au (2.18) 
k 

First integral of Euler Equations: $$- 9 20 (2.19) 

3 

f 
Transversality condition: dz + - Hdt + Xi dYi - 0. (2.20) 

1 

Weierstrass condition: Ii optimal >H non-optimal. a2H < 0 or - 

&k2 

(2.21) 

+ 
Corner conditions: - Hdt + Xi dYi I- - 0. (2.22) 

ApplXcation of the theory. - The above conditions may be applied directly 
to the minimum time problem by first setting z = 0 and f - 1. Then with the 
constraint equations given by equations (2.11) - (2.13), the Hamiltonian as 
defined by equation (2.16) becomes 

H - h,(r - sin y) f ls(u co8 y) + hs(u sin y) - 1. (2.23) 

The optimizing conditions in terms of this H function reduce to the 
following, 

8 
5 Euler: xe -0, 

11 Euler: h k + b' - 0, 
ua7 q 

u Euler: 3c u $ + xs COB y + A 
rl 

sin y + )c' - 0, 
U 

(2.25) 

y Euler: - Au COB y - Ak u sin y + All u cos y * 0, (2.27) 

1st integral: H * constant, (2.28) 

5 

ki - 



[: 1 
f 

Trans: - H dr + Xk dg + )crl d? + Au du - 0, (2.29) 
1 

Weier: Xu sin y - Xs u co8 y - A u sin y < 0, 
? (2.30) 

Corner: - C 
+ 

H dr + Xf; de + bq dq + x, du I- * 0. (2.31) 

A minimum time problem between two points in range-altitude space is one 
in which the final time is left free and the initial and final values of the 
f and 7 coordinates are specified. The initial value of the velocity is 
generally specified and the final value may or may not be fixed. For the 
purpose of analysis, the initial value of the velocity will be assumed to be 
given and the final value will be left free. Under these conditions the 
transversality condition yields the following information, 

H f * 0, (2.32) 

5 uf - 0. (2.33) 

Since the Hamiltonian is a constant, equation (2.32) yields H = 0 throughout 
the trajectory. Hence equation (2.28) may be written as 

X,Cr - sin y) + Xk u co8 y + Arl u sin y - 1. (2.34) 

Equations (2.24) - (2.27) and (2.34) may now be combined into a single 
differential equation, the solution of which determines the optimal control. 
To obtain this expression the control equation (2.27) is solved for the 
control variable y, 

A 
A 5 tan y = X - $, (co8 y # 0) 

ll 
(2.35) 

and differentiated with respect to the variable % (noting from equation 
(2.24) that Ai = 0), to give 

A5 sec2y yt - A' rl - (u A; - x, u')/u2. (2.36) 

The derivatives on the right hand side of equation (2.36) are eliminated by 
substituting the remaining Euler equations (2.25) and (2.26) and the equation 
of constraint (2.11) into equation (2.36) to give, 

Xs sec2y y’ = Au 
[ 

r& & u au - &- 1 +L u2 [ As u CO8 y + XT u sin y 

+ Au tr - sin y) 
1 

. (2.37) 
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The last term in brackets is equal to unity according to equation (2.34). 
Equations (2.27) and (2.34) may be combined to give 

Aur = 1 - X 5 u set y. (2.38) 

Hence if r # 0, equation (2.38) may be solved for A and substituted into 
equation (2.37) u 

Xe sec2y y’ =$(l-X&usecy) [-&-$I +$ 
U 

If At # 0, this equation may be reduced to the following expression, 

Y’ u 
-cos 

[ 
$(u&u2$(~-l)+~]. 

(2.39) 

(2.40) 

This single differential equation which is valid when r i 0 and 5 + 0 
contains all of the Euler equations, so that its solution in conjuncti n with 8 
the equations of constraint (2.11) - (2.13), the transversality condition 
(2.33), the Weierstrass condition equation (2.30) and the corner conditions 
(2.31) will yield a minimum time trajectory between two points in 5 - 7 space. 
The transversality condition, h = 0, may be used to evaluate As. by setting 
the left hand side of equation 12.38) to zero to yield 

CO8 y f 
"5 = Uf (2.41) 

The Weierstrass condition may be simplified by substituting equation 
(2.35) into equation (2.30) to obtain 

he u set y > 0. (2.42) 

Thus set y must maintain the same sign as 1 
an end point is chosen to the right of the i 

throughout the trajectory. If 
nitial point, then some portion 

of a trajectory joining these two points must have a positive flight path 
angle y. Since A 
A IO then A mu t be positive (thus the flight path angle must also be pos- 5 

has a constant sign throughout, it is concluded that if 

ilive throughbut). If equality can occur in equation (2.42) then the mini- 
mizing arc may have a corner at such a point. Equality can occur only if 

2 
= 0 or u = 0. The possibility of u - 0 along a minimum time trajectory is 

p ysically inconsistent and will not be considered. Since X is a constant 
throughout the trajectory it is either identically zero or n ver zero. d 
Hence it is concluded that a trajectory between two points will either be 
definitely continuous throughout (Xe # 0) or possibly discontinuous (Ae - 0). 

Continuous solutions (A C 0). - If )c # 0, then the optimal .trajectory 
is determined from the solutfon to equatiofis (2.11), (2.12), (2.13), (2.40), 
and (2.41) suuvnarized for convenience below. The corner condition equation 
(2.31) is not needed. 



I 

U -2: - sin y, (2.11) 

5' = u cos y, (2.12) 

11' = u sin y, (2.13) 

Y" u 
CO8 y 

[ 
: tu 5 _ u2 @ (ff - 1) + y] , (r + 0) (2.40) 

CO8 y 2 
Xc = u2 l 

(2.41) 

Equation (2.40) is not valid whenever r - 0. Under these circumstances, 
equation (2.38) which reduces to 

COSYA 
U 5’ (r = 0) (2.43) 

may be used as the optimizing condition in place of equation (2.40). Under 
the special case of r R 0, equations (2.11), (2.12), (2.13), (2.41), and 
(2.43) may be solved analytically to obtain a cycloid trajectory. This is 
the solution to the well-known brachistochrone problem. 

Analysis and solution to equations (2.11) - (2.43) (A, $ 0) are contained 
in Chapter III. 

Discontinuous solutions (1 - 0, the resulting solution to = 0). - If )c 
the optimizing conditions may b t discontinuou $ . In this case the optimizing 
conditions (2.24), (2.25), (2.26), (2.27), (2.34), (2.33), and (2.31) reduce 
to 

5 Euler: xg = 0, (2.44) 

7 Euler: 1 k + A' - 0, 
ua7 tl 

u Euler: )r 

y Euler: - A CO8 y + A u COB y = 0, 
U 7 

(2.47) 

1st integral: f(r - sin y) + )ill u sin y = 1, (2.48) 

Trans: Au = 0, (2.49) 

(2.50) 

From equation (2.47) the possible subarc solution cos y = 0 is obtained. If 
CO8 y # 0, then equation (2.47) may be written as 

8 



)Lrl u = x . 
U 

(2.51) 

Equations (2.45), (2.46), (2.47) and (2.51) may now be combined into a 
single optimizing condition. To obtain this expression, equation (2.51) is 
differentiated with respect to r to give 

(2.52) 

The derivatives are eliminated by substituting equations (2.45), (2.46), and 
(2.11) for A;, Ai, and u' to give 

1 
U I: 

i&L+ 1 +rX -0. 
51 

Substituting (2.51) into (2.53) and dividing by XT (A7 # 0) results in 

or 

(2.53) 

(2.54) 

(2.55) 

It is interesting to note that equation (2.55) is identical with the well- 
known climb program for the minimum time to climb problem (2). 

Joining of subarc solutions. - Trajectories in which A 
i 

= 0 throughout 
can in general be composed of four types of subarcs ; vertic 1 dives and climbs 
given by 

CO8 y - 0. (2.56) 

and intermediate subarcs given by the solution to equation (2.55) 

% - uq(rl)* (2.57) 

Trajectories resulting from following the velocity-altitude program given by 
equation (2.57) are obtained by substituting this relationship back into the 
equations of motion (2.11) - (2.13) and solving for the flight path. The 
resulting trajectories are symmetrical and may proceed either to the right 
or left. The choice of optimal trajectories at a corner point is summarized 
in Figure 2.2. 
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1. cos y = 0 

2. cos y = 0 

FIGURE 2.2 - CHOICE OF OPTIMAL TRAJECTORIES 

The order and restrictions under which these trajectories are joined are 
determined from the transversality and corner conditions. There are basic- 
ally three different types of corners. 

Type 1. Arcs 1 or 2 joined with arcs 3 or 4 
Type 2. Arcs 3 joined with arcs 4 
Type 3. Arcs 1 joined with arcs 2 

Corners of type 1. - The corner conditions require that the Lagrange 
multipliers X and A be continuous. 
are continuoug at th:! corners. 

In addition, all the state variables 
Hence, no special notation will be used to 

denote these variables just before and after the corners. The corner 
condition on the Hamiltonian given by equation (2.50) thus reduces to the 
following. 

Arcs 1 with 3 or 4: h,(r - 1) + x,,u - 1 = f(r - sin y-) 

+ AT(u sin y ) - 1. (2.58) 

Arcs 2 with 3 or 4: h,(r + 1) - A u - 1 0 h(r - sin y ) 
? 

+ h?(u sin y-) - 1. (2.59) 

Along subarcs of the type 3 or 4 the Lagrange multiplier A and 1 are 
related by equation (2.51). Substituting this equation ingo the %ove 

10 



reduces these equations to the followjng. 

Arcs 1 with 3 or 4: aT;,(r - 1) = X,(1: - 1). (2.60) 

Arcs 2 with 3 or 4: 'hrlu(r + 1) - lu(r + 1). (2.61) 

From equation (2.11) it is seen that the quantities (r - 1) - 0 and (r + 1) 
- 0 correspond to terminal climb velocity and terminal dive velocity, 
respectively. Hence these conditions may be ruled out as a possibility to 
satisfy equation (2.60) and equation (2.61), unless the solution to equa- 
tion (2.55) yields the terminal climb or dive as an optimal solution (the 
velocity at the corner must be continuous). Discarding the possibility of 
(1: - 1) - 0 and (r + 1) - 0, both equation (2.60) and equation (2.61) 
yield the same result. 

Au-X. 
il u 

(2.62) 

Equation (2.62) is identical with equation (2.51). This latter equation was 
used in conjunction with the Euler equations to yield the velocity program 
u - u cl)* Thus the velocity at which a switch may occur is equal to the 
veloc?ty along the intermediate subarc u (7). Hence it is concluded that a 
vertical dive or climb may be optimally Qoined to the intermediate subarc 
when the velocity in the vertical dive or climb is equal to u (7). Since 
the velocity program in a vertical dive or climb is generally'either 
increasing or decreasing, there is usually only one point in a given dive or 
climb in which a switch may take place. It is also apparent from these con- 
ditions that the intermediate subarc may be left at any point to optimally 
join a vertical dive or climb. 

Corners of type 2. - The corner condition on the Hamiltonian function 
in this case is given by 

Arcs 3 with 4: h,(r - sin y-) + lcl(u sin y-) - 1 - 

Au (r - sin y+) + Irl(u sin y+) - 1. (2.63) 

The Lagrange multipliers x and 1 are related by equation (2.51) on either 
side of the corner. SubstYtuting7equation (2.51) into the above reduces 
equation (2.63) to an identity. It is concluded that an intermediate subarc 
to the right may be optimally joined with an intermediate subarc to the 
left at any point, or vice versa. 

Corners of type 3. - The corner condition on the Hamiltonian function in 
this case is given by 

Arcs 1 with 2: X,(r - 1) + Aqu - 1 = XU(r + 1) - X u - 1, 
7 

(2.64) 

or 2 I: b -Au -0. 
U ‘1 

3 (2.65) 

Using the same arguments as before, it is easy to show from equation (2.65) 



that a vertical dive may be optimally joined to a vertical climb when 
u - Cq((l) and vice versa. 

Optimal arrangement of traiectories. - From the preceding discussion it 
was observed that a switch from one optimal subarc to another can be made 
only when u - u (q)= Along vertical subarcs, velocity is generally an 
increasing or dacreasing function of time and along intermediate subarcs 
u - u (11). Thus once an aircraft switches to a vertical subarc from any 
otherqsubarc, it cannot optimally switch off of the vertical subarc but must 
remain on that trajectory thereafter. However, an aircraft may optimally 
switch from one intermediate subarc to another any number of times. Figure 
2.3 illustrates these possibilities. 

, 

LiU= uq 

PI u = uq 

1’ 

FIGURE 2.3 -OPTIMAL SWITCHING 

Unless the initial specified velocity is given by u - u (7) it is concluded 
that flight trajectories in which the A 

h 
- 0 solution 18 valid will start 

with an initial dive or climb and remai in vertical flight until the velocity 
u - u (T)) is obtained. At this point a switch is made to the intermediate 
trajeztory (except for an endpoint directly above the origin). 

When the transversality condition, Xuf - 0, is substituted into equations 
(2.47) and (2.48) the following results are obtained: 

A 
rl f 

u CO8 yf - 0, (2.66) 

A 
7 f 

u sin yf - 1. (2.67) 

I2 



The only way both of these equations can be satisfied is for cos yf - 0. Thus 
the final subarc must be a vertical trajectory which from equation (2.67) 
must pass through the final specified endpoint with the following velocity. 

1 'I + - 
Uf --x 

slf 
(2.68) 

where the plus sign corresponds to a vertical climb and the minus sign cor- 
responds to a vertical dive. Hence the sign of A 
the proper final trajectory is a vertical dive or ?f 

will determine whether 
climb. This latter condi- 

tion also dictates the vertical distance increment between the final endpoint 
and the last switch point. Figure 2.4 illustrates a typical trajectory 
between two points for the case of Xk - 0 

I 3 

I 
2 

FIGURE 2.4 - TYPICAL TRAJECTORY WITH A 
5 

- 0 

The value of k must in general be obtained from the integration of the 
Euler equationk? If, however, the change in r due to altitude variation 
over this final subarc can be considered to be small, then from equation 
(2.45) the result is obtained that Arl = constant. Thus in this case 

)c -1 
?f 14’ 

(Fig. 2.4) 

The value of X anywhere along the intermediate trajectory may be obtained 
by substitutins equation (2.51) into equation (2.48) to obtain 

)L 1 I- 
? u r' (2.70) 

In particular 

A+ - 
1 

uq4 rq4 
(2.71) 

The total solution. - It was concluded in the preceding discussion that 
a minimum time trajectory to a given point will either be completely 
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continuous or discontinuous as shown in Figure 2.4. The particular points in 
state. space which are obtained with either continuous or discontinuous solu- 
tions will of course depend upon the performance characteristics assigned to 
a particular model aircraft and upon the choice of initial conditions. For a 
given model aircraft the initial conditions alone should dictate the location 
of the regions in which continuous or discontinuous solutions exist. logi- 
cally, these two regions should not overlap. The boundary between the two 
regions can be determined either by finding the limiting cases for continuous 
solutions or by finding the limiting cases for discontinuous solutions. This 
latter procedure will be used in the next section since it is easier. The 
minimum time solution for a particular model aircraft will be determined 
throughout state space in sections III and IV. 

SECTION III 

DISCONTINUOUS SOLUTIONS 

The Optimizing Conditions 

Supplementary comments. - In the preceding analysis thrust and drag were 
assumed to be expressible as functions of altitude and velocity. This is a 
limiting assumption since induced drag cannot realistically be accounted for 
under such a restriction. However, induced drag is usually small for high 
speed flight and often can be neglected. A much more serious disadvantage 
lies in the fact that the results of Section II cannot be implemented until 
some mathematical functional form is chosen for the thrust and drag. A 
simple yet accurate mathematical representation for the thrust and drag in 
terms of altitude and velocity is not possible for the spectrum of flight 
regimes covered by high performance aircraft. Experimentally accurate thrust 
and drag variations with altitude and velocity are available from wind tunnel 
data and engine test curves. But such data, in general, cannot be expressed 
in terms of simple analytical equations. 

For the purpose of obtaining the major effects of thrust and drag on 
the form of an optimal trajectory the detailed variations in engine and drag 
data will be neglected. In the analysis which follows, thrust and drag will 
be expressed by the simplest physically consistent functional form that can 
possibly be assumed and yet maintain the gross effects of these forces. For 
the model aircraft to be considered, the thrust will be assumed to be constant 

T=T. 
0 

This assumption is accurate for a rocket engine or for a turbojet engine 
operating over a limited range of altitude and velocity. The drag will be 
expressed as 

D - 5 ooACD v2. 

14 
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With the density p , assumed constant, this relationship is reasonably accur- 
ate for an aircraf: operating with limited variations in altitude and veloc- 
ity. 

In the terms of the nondimensional velocity, the drag may be written as 

D-C 
2 

Du mg. (3.3) 

With the mass of the aircraft assumed constant the non-dimensional thrust 
minus drag may be written as 

where K is the 
tionship for r 
conLinuous and 

T -D r---K-C u 2 
w3 D ' (3.4) 

constant thrust to weight ratio. With this functional rela- 
the equations of constraint which must be satisfied for both 
discontinuous trajectories become 

8 
U -K- CD 2 - sin y, (3.5) 

5' - u CO6 y, (3.6) 

rl’ = u sin y. (3.7) 

With these assumptions the optimizing conditions (2.55) and (2.56) for dis- 
continuous solutions become 

1 K 
u4 - 3c (CO8 # 0) 

D 
or 

cos y = 0. (3.9) 

The end point, condition (2.68) may be evaluated explicitly since X,, 
under these assumptions is constant. Evaluation of equation (2.68) along the 
intermediate trajectory by means of equation (2.71) gives 

2 

1 

K 
Uf-YK T (3.10) 

Analysis 

The subarc solutions. - For the particular case under consideration, the 
intermediate trajectory corresponds to a steady flight situation. With uq 
given by equation (3.8), the equation of motion in the tangential direction 
given by equation (3.5) reduces to 

sin y = 5 K. (3.11) 
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Since this equation has no solution for K > 3/2, it is concluded that dis- 
continuous solutions with steady intermediate arcs will exist only for 
values of the thrust to weight ratio K < 3/2. 

It has been shown that the final subarc must correspond to vertical 
flight and that the velocity at the final point must correspond to 

Uf -$Ku 
4' 

Under this circumstance with K <i it is easy to show that the final subarc 
is a climbing subarc. This conclusion is made from the following considera- 
tions: 

1. The terminal velocity in a vertical dive or climb, obtained 
by setting u' - 0 and sin y = +, 1 in equation (3.5), is given by 

UTclimb a (3.12) 

or 

UTdive a (3.13) 

2. The velocity on the intermediate steady subarc is given by 

(3.14) 

3. The initial acceleration as given by equation (3.5) upon leav- 
ing the intermediate steady subarc to a dive or climb IS given by 

or 

I 

ulclimb - ? 2K-1, 

I 

Uldive -$K+l. 

(3.15) 

If KC;, then equations (3.12) - (3.14) may be used to show that 

UTclimb <Uf <U) 
'4 

(3.17) 

>u UTdive q' (3.18) 

and 
I 

U > 0. 

ldive 
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Thus in a climb the velocity will decrease from uq to the terminal velocity, 
whereas, in a dive the velocity will increase from u to the terminal veloc- 
ity. Since the optimal final velocity, uf, is less t an up but greater than qh 
UTclimb' the only possible vertical subarc is a climbing one. 

If K - z the intermediate trajectory is identical with the final verti- 
cal subarc since by equation (3.11) y = +, 90: But since 

it is concluded that in this case the intermediate/final subarc is a vertical 
climb. 

It is interesting to note that by substitution of equation (3.8) and 
(3.11) into equation (3.7), the following expression for the rate of climb 
of the aircraft along the steady intermediate trajectory is obtained, 

9’ -$K (3.21) 

which is identical to the optimal terminal velocity. For this problem equa- 
tion (3.21) represents the maximum continuous rate of climb for the aircraft. 
The fact that the optimal final velocity is equal to the maximum rate of 
climb is perhaps intuitively obvious. If the velocity on the final vertical 
climb dropped below the maximum continuous rate of climb, then a better 
trajectory could be obtained by flying along the steady intermediate trajec- 
tory. 

At the start of any trajectory it is assumed that the initial point and 
velocity will be specified. There are three possibilities for the initial 
velocity which will dictate the nature of the initial subarc. These possi- 
bilities are 

u1 - Uq’ 

>u u1 q' 

and ul<u. 
4 

(3.24) 

Traiectories with ul:uqo - From equations (3.19) and (3.20) and equa- 
tion (3.5) it is seen that if the aircraft starts off either in a vertical 
dive or climb the velocity either increases or decreases with time. Hence a 
switch can never be made from these trajectories. Only on the climbing 
trajectory can the final velocity condition uf 0 $ K uq be met. This condi- 
tion will be met only at one point directly overhead. The other possible 
trajectory in this case is to initially embark on the steady intermediate 
trajectory either to the right or left. Once on this trajectory a switch 
can be made from a right running trajectory to a left running trajectory at 
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any point, or vice versa, but it IS obvious that only one switch can be made 
to vertical trajectory and this must be to a vertical climbing trajectory 
which intersects the final endpoint with a velocity u sf-fKu3. By exam- 
ining all possible solutions in this case it IS read1 y s en a shown in 
Figure 3.1 that there is a boundary above which solutions of this nature are 
possible 0, = 0) 

9 

4 

1 
. 
I 

FIGURE 3.1 SOME TYPICAL TRAJECTORIES WITH u1 - u q (Xg - 0) 

The boundary in this case corresponds to the locus of endpoints of trajector- 
ies with just one corner. There is only one possible trajectory to each 
point on this locus. For example, trajectories BCF and BDG represent two 
typical trajectories. If an endpoint lies above this line, then there is 
more than one way of optimally reaching that endpoint. There are two ways 
of reaching the point K with trajectories with two corners; these are 
illustrated by trajectories BEHK and BJHK in Figure 3.1. If trajectories of 
more than two corners to the point K are considered, then the possible ways 
of obtaining this point become infinite. Trajectory BLMNEK illustrates an 
example trajectory with more than two corners. All of the trajectories to 
the point K are confined to lie within the parallelogram BEHJ. 

Trajectories with uequq. - It is evident that in this case the initial 
trajectory must be a vertical climb, since if a vertical dive were used, the 
velocity would either monotonically decrease or increase to the terminal 
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velocity which according to eq (3.18) is greater than u . Thus the endpoint 
condition or a switch condition could never be met. 9 

If a trajectory is undertaken with an initial vertical climb, the velocity 
will decrease from u until the velocity u is attained. At this point a switch 
may be made to an in ermediate i trajectory %d conclusions in regard to possible 
endpoints may be made as in the previous section. If, after the vertical climb, 
a switch is made to a vertical dive instead, the possibility of satisfying the 
condition for a switch or endpoint can never be met and hence this possibility 
must.be discarded. If no switch is made at this point, the velocity will con- 
tinue to decrease until the velocity u2 = 5 K uq is obtained. At this point 
the trajectory must be terminated. 

If all possible solutions are examined in this case a boundary of endpoints 
is obtained as shown in Figure (3.2) 

9 

FIGURE 3.2 - SOME TYPICAL TRAJECTORIES WITH ulkq()ct=C) 

The boundary in this case corresponds to the locus of endpoints to trajectories 
with just two corners. There is only one possible trajectory at each point on 
this locus. Typical trajectories to points on the locus are represented by 
segments ABCF & ABUG in Figure 3.2. For an endpoint above this locus there is 
more than one way of optimally reaching a given point. There are two ways of 
reaching the point K with trajectories of three corners, illustrated by segments 
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ABEHK and ABJHK, and an infinite number of ways of reaching the point K 
with trajectories of more than three corners. All trajectories to the 
point K lie within the parallelogram BEHJ. 

Traiectories with u1 < u,. - In this case the aircraft must again 
start in vertical flight. It'is evident that if uf < ul < u 

9 
, then the 

final condition uf 0 2/3 K up can be attained with a vertica climb. This 
is a possible trajectory (a continuous one) but is the only one possible 
starting with a vertical climb since the switching velocity uq will never 
be attained by starting with climbing flight. Hence for this case a d$- 
continuous solution must start with a vertical dive, until the velocity u9 
is attained. At this point a switch must either be made to a vertical climb 
or to the intermediate trajectory (the endpoint condition cannot be met if 
the dive is continued). By examining all possible trajectories a boundary 
of endpoints is again attained as shown in Figure 3.3. 

9 

FIGURE 3.3 - SOME TYPICAL TRAJECTORIES WITH u1 <uq (yo) 
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Again in this case the boundary above which discontinuous solutions exist 
is composed of the locus of end points of trajectories with just two corners. 
The segments ABCF and ABDG represent typical trajectories to the endpoints 
F and G. There is only one trajectory to each endpoint on this boundary. 
Above this boundary, as before, there are two trajectories with three corners 
and an infinite number of trajectories with more than three corners to each 
endpoint. The segments ABEHK and ABJHK represent trajectories with three 
corners to the point K. 

Location of boundary locus. - The boundary above which discontinuous 
solutions are possible are shown in Figures 3.1 - 3.3 for the initial con- 
'ditions u 

i 
- uq, u1 > uq and ul < uq= The slope of the boundary is identical 

withthe s ope of the intermediate trajectory and hence may be determined from 
equation (3.11). Thus the boundary line is completely determined if its 
intercept with the B axis can be determined. In general this intercept point 
can be located by calculating the vertical distance traveled on the initial 
dive or climb Dl - AB (Figures 1 - 3) (Dl = 0 if u1 = us) and subtracting or 
adding this value for a dive or climb respectively to the distance traveled 
during the final climb D2 = CF = DG = HK (Figures 1 - 3). 

The distances D and D2 are obtained by integrating the equations‘of 
motion with y = + 90 2' . By setting y = + 90' in equations (3.5) and (3.6) 
the following results are obtained: 

1 

U ..X - CD u2, (3.25) 

rl’ =u. (3.26) 

where K = K - 1 for a climb, 

and ?=K+l for a dive. 

Equation (3.25) is a simple form of the Riccati equation and may be integrated 
to yield the velocity as a function of time by making the transformation 

u,Li 
'D ' 

Changing variables in equation (3.25) by means of equation (3.27) yields 

Y” - ibny = 0. 

(3.27) 

(3.28) 

The nature of the solution-to equation (3.28)depends upon whether z is 
positive or negative. If K > 0, let s2 = ED and if K < 0, let s2 = zD. 
Thus equation (3.28) may be written as 

Y" - s2y = 0 ) (ii > 0) (3.29) 

or y" + s2y = 0 , (ii < 0) (3.30) 
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with the solutions 

Y=A 1 sinh s7 B 1 cash ST (ii > 0) (3.31) 

or Y=A 2 sin 87 + B 2 cos ST. (it < 0) (3.32) 

Substituting equations (3.31) and (3.32) into equation (3.27) yields the 
following expressions for the velocity: 

or 

Cl + tanh s'c 

1 + Cl tanh s7 1 , (ii > a (3.33) 

U” 6 
cD [ 

c2 - tan sT 

1 + C2 tan sr 1 ' (ii < 0) (3.34) 

The constants Cl and C2 in equations (3.33) and (3.34) can be evaluated 
from the initial condition u = ul, at time t = 0 to give 

ul ‘D Cl = c2 - s . (3.35) 

On the final arc D2, ul f. uq= The time on the final arc can be measured 
from zero in this case. 

By defining the following quantities 

S u, = - r- (terminal velocity) , (3.36) 

and U = u/"T . 

then with the use of these definitions 
and (3.34) become 

u 1 + tanh 8'5 
U’ 

1 + ';;l tanh s't 

and - u1 - tan 87 
II- 

1 + Ul tan s7 

(3.37) 

and equation (3.35), equations (3.33) 

J (ii > 0) (3.38) 

. (ii < 0) (3.39) 

If the above equations are now substituted into equation (3.26) and in- 
tegrated with the initial condition '1 = 0 when t = 0, then the following 
results are obtained: 
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1 1 + zl tanh 67 
D=- 

cD 
an 

tanh'so 1 Y ii>0 
l- 

[ 

m 
1 + ‘21 tan s7 

D=- 
; a, fzzry 

In order to evaluate the distance Dl spent on the initial vertical subarc, 

(3.40) 

. K-co (3.41) 

the time spent on the subarc 
(3.39). By setting ii = iiq = 
obtained: 

using equations (3.38) and 
the following expressions are 

tanh (SC) = u1 - uq u 
Pq -1' ibo (3.42) 

- - 

tan (87) = u1 - uq G lTiq+l . K<O (3.43) 

Substituting these results into equations (3.40) and (3.41) yields the 
following expressions for the distance traveled on the initial vertical 
subarc: -2 

1 
D1= 3 

an 
u1 - 1 r-2 1 -1' 

b-0 

% 

-2 
1 +1 

DIP 3 an [ 3 '5 
-2+1 l 

“h 

xc0 

(3.44) 

(3.45) 

In order to evaluate the distance D2 spent on the final vertical subarc, 
the time spent on the subar skmust first be evaluated using equations (3.38) 
and (3.39) by setting Ii = 3 Z and ?.i=ii 
gives 9 q 

and solving for (ST), which 

u (l- 
tanh(s7) - 2i 2 

pQ 

-c -1 > x>o (3.46) 
3 Q 

tan (67) = uq 
(l-3) 

. GO 
2K-2++ 
3 u4 

(3.47) 
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Substituting these results into equations (3.40) and (3.41) yields the 
following expressions for the distance traveled on the final vertical 
subarc: n 

D2 =+ Jn [$$-$--I , F>C (3.48) 

If x< 0 then the intercept point of the boundary locus with the 
q axis is evaluated by adding together the values of Dl and D2 as obtained 
from equations (3.45) and (3.49). If z > 0, then this intercept point is 
evaluated by either adding the value of Dl to D2 or subtracting the value 
of D from D2 as obtained from equations (3.44) and (3.48) depending upon 
whet h er the initial arc is a vertical dive or climb. 

The value of the initial velocity, u 
a' 

the thrust to weight ratio, K, 
and the drag coefficient, CD, completely etermine the location of the inter- 
cept point. To determine the intercept point this information is first used 
to evaluate u 
a vertical cl-mb and if ul < uq 9 

from equation (3.14). If ul > uq, the initial trajectory is 
the initial trajectory is a vertical dive. 

The constant K is then evaluated from 

x=K-1, for a climb 

z=K+l, for a dive 

With this information, the parameter s is then evaluated from 

s2 - -KC D, if K< 0 

s2 - =-K c D, if z > 0 . 

The terminal velocity is then evaluated from equation (3.36) so that the 
qualities, 

and 
;; 'U/U 

q q T' 
may be evaluated. Once ';;1 and u are determined the time spent or distance 
traveled on each of 
(3.49). 

the vertical'subarcs is obtained from equations (3.42)- 
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SECTION IV 

CONTINUOUS SOLUTIONS 

Computational Procedure 

Supplementary comments. - The model aircraft used in this section to 
determine the nature of continuous solutions will be the same as that used 
in Section III to determine the nature of the discontinuous solutions. Thus 
the controlling equations of constraint as given by equations (2.11)-(2.13) 
will be identical to those used in Section III, equations (3.5)-(3.7)' which 
for convenience are again written as 

U' = K-CDu2 -sin y, (4.1) 

5' = u cos y, (4.2) 

l-l ' = u sin y. (4.3) 

The optimizing conditions for continuous trajectories as given by equations 
(2.40)' (2.43) and (2.41) reduce to the following for an aircraft operating 
under the above equations of constraint. 

or 

yt=y [ ;<,- (l-y)+yY] 

WY 
U x5’ 

where hS = cm Y2 

u2 

r#O 

r= 0 

(4.4) 

(4.5) 

(4.6) 

An optimal solution requires integration of the above set of equations. 
This set contains four first-order non-linear differential equations in the 
four variables u, 5, q, and y. Four constants of integration and a value 
for the constant 15 are needed in order to completely determine a solution. 
As formulated, three of these constants of integrations are the specified 
initial conditions for the state variables u, t, and q. The fourth constant 
of integration, the initial flight path angle yl, is unknown. 

A direct approach to solving these equations would be one in which con- 
secutive guesses are made for both y 
repeatedly integrated until the resu i 

, and 1~ SO that the equations can be 
tant trajectory in passing through the 

desired endpoint satisfies equation (4.6). Such an approach, however, is not 
desirable from the standpoint of the difficulty of adjusting the constants yl 
and X5 to meet specified end conditions. The sensitivity of an endpoint to 
these parameters is a function of endpoint location. Generally speaking, the 
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further the endpoint is located from the initial point, the greater the 
sensitivity of the solution will be to adjustments in 1~ and yl. Under 
such circumstance, a boundary is soon reached, such that trajectories be- 
yond this boundary cannot be obtained by using the direct approach even 
with an extensive digital computer system. A more detailed discussion of 
these difficulties plus a detailed outline of the computational procedure 
which was used here for the problem under consideration is given in reference 5. 

Flooding technique. - In order to avoid the difficulties associated with 
the above mentioned direct approach to the two point boundary value problem, 
the so-called flooding technique may be used to generate a solution. With 
this technique solutions are generated by systematically varying the unknown 
parameters, yl and Xe, throughout their allowable ranges. For a given set of 
initial conditions equations (4.1)-(4.4) are integrated until the endpoint 
condition, X 

5 
= y2/u2 (r # 0), is met. In this way the endpoint for any set 

of starting onditions simply falls where it may. A manifold of optimal tra- 
jectories is generated, and the complete region of space throughout which 
solutions are possible can be determined. 

The use of the flooding technique yields such a large number of results 
that the solution to all points in space may be easily visualized and areas 
of unusual interest quickly discovered. From this resultant manifold of solu- 
tions, the solution to a particular two point problem can at the very least be 
readily approximated (such an approximation may not be possible to obtain using 
the direct approach). 

As an example of the computing procedure and method of presentation to be 
used in this chapter, suppose that yl is set to the value of -30° and that eq- 
uations (4.1)-(4.4) are integrated with several different values for X as 
shown in Figure 4.1. If hk is varied in a manner such that the distan e be- 5 
tween the endpoints of any two adjacent trajectories is relatively small, then 
the endpoints may be joined in a continuous fashion to form a "locus of optimal 
endpoints." Any point on this locus can be reached optimally by starting with 
the given value of the initial flight path angle. 

‘I TRAJECTDRIES 

OPTIMAL ENDPOINTS 

FIGURE 4.1 - GENERATING THE LOCUS OF OPTIMAL ENDPOINTS 
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If this process is repeated for several different values of the initial 
flight path angle, the 5 - q plane becomes "flooded" with optimal trajec- 
tories and their corresponding loci of optimal endpoints (for example see 
Figure 4.2). The trajectories corresponding to the various values of yl 
and 1~ may cross, but the loci of optimal endpoints for a given aircraft 
are non-intersecting. Such plots of the loci of optimal endpoints rather 
than the trajectories themselves more clearly summarize the results of the 
analysis. 

Computer Results 

Cases to be studied. - It was shown in Section III that no discontinuous 
solutions are obtained when the thrust to weight ratio of the model aircraft 
is greater than 1.5. This thrust to weight ratio represents a borderline 
case. For values of the thrust to weight ratio greater than 1.5, every point 
in 5 - q space can be reached with a continuous solution. Examples of this 
situation are contained in Figures 4.8 and 4.11. These figures show that the 
entire 5 - 9 space may be filled with optimal trajectories for an aircraft 
with a thrust to weight ratio of 1.8. For values of the thrust to weight 
ratio less than of 1.5, both continuous and discontinuous solutions are needed 
to reach every point in C - q space. Examples of this situation for a thrust 
to weight ratio of 0.5 are shown in Figures 4.2 and 4.5. Only the endpoints 
obtainable with continuous solutions are shown in these figures. The dis- 
continuous solutions which are not shown can be easily computed as previously 
discussed in Section III. The boundary line between continuous and discon- 
tinuous solutions shown in these figures is identical with the boundary as 
computed in Section III. 

It is also shown in Section III that when ul < u 
arc was a diving one and when u 

1 
> uq, the initial ve 9; 

, the initial vertical 
tical arc was a climb- 

ing one. A similar effect is a so found for the continuous solutions. In 
order to illustrate the various points of interest pertaining to the contin- 
uous solutions, four cases T/W < 1.5, ul < uq; T/W < 1.5, u1 > uq; T/W > 1.5, 
Ul < uq; 
sented 

T/W > 1.5, ul > uq were examined in detail and the results are pre- 
in Figures 4.2-4.13. 

The significance of A 1. - The form of an optimal solution is very sensitive 
to the parameter X 

A 
. Preltminary consideration of its effect on the solution 

will aid in compre ending the results. 
solution is always greater than zero but 

The value of XI; which will yield a 
less than cos yl/u 

E; 
for trajectories 

proceeding to the right. If 1~ is set at a value greater t an cos yl/ul the 
resultant trajectory will ultimately proceed to a terminal dive with no chance 
of satisfying the endpoint condition, X,2 = 0. 
case is given in Figures 4.3, 4.6, 4.9 and 4.12. 

A plot of cos yl/ul for each 

For values of h5 less than cos yl/ul but in the neighborhood of this 
value, the resultant trajectory is short with a shape that is similar to the 
initial portion of the locus of optimal endpoints corresponding to the same 
initial angle. This effect is illustrated in Figures 4.4, 4.7, 4,lO and 4.13 
for some typical "short" trajectories. In all cases the length of the trajectory 
will increase as X 5 is decreased from the value cos yl/ul. "Long" trajectories 
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in each case are characterized by a portion of the trajectory being flown 
in a nearly steady manner. During this portion of the trajectory the slope 
of the flight path nearly coincides with the linear portion of the corres- 
ponding locus (see Figures 4.4, 4.7, 4.10 and 4.13). 

In cases when ul 
bound as 1~ 

> uq the length of the trajectory increases without 
approaches some fixed number greater than zero. For example, 

as shown in Figure 4.6 for a trajectory with an initial angle of 0' and 
in Figure 4.12 for a trajectory with an initial angle of 30" 1~ in the 
neighborhood of point A correspond to the short trajectories shown in Fig- 
ures 4.7 and 4.13. As the values of Xe approach the point B the length of 
the trajectories increase without bound to infinity. This effect can be 
visualized from Figures 4.7 and 4.13. Thus as long as ul > u , 
spectrum of continuous trajectories are obtained by continual y varying X 9 

the entire 

from its maximum value of cos yl/ul to some fixed value of ?.E> 0 (point B f 
for each initial value of yl between yl = f 90' . 

In cases where u1 < uq a different phenomena takes place. The locus 
curves double back on themselves as 15 
(see Figures 4.2 and 4.8). 

is decreased from the value cos yl/ul 
These curves double back in two distinctly dif- 

ferent ways. For example as shown in Figures 4.3 and 4.9 a trajectory with 
an initial flight path angle y1 such that X 
the values of cos yl/ul and zero (outside t it 

may be chosen freely between 
e forbidden zone as illustrated 

by the line ABC for the y = 
1 

-20° case) the resultant trajectory shown in 
Figure 4.10 increases in 
the value of X 

ength as X5 decreases from its maximum value until 
corresponding to point B Figures 4.3 and 4.9 is obtained. As 

1~ is further h ecreased from the point B the trajectories decrease in length 
approaching a vertical trajectory of finite length as X 

5. 
approaches zero. 

These latter "zooming" trajectories are illustrated in igure 4.10. 

For a trajectory with an initial flight path angle such that X5 may not 
be chosen freely between the values of cos yl/ul and zero without intersecting 
the forbidden zone (illustrated by the line DEFG in Figures 4.3 and 4.9) the 
resultant trajectory increases in length without bound as A decreases from 
its maximum value to the value at the point E. For values 8f A between the 
points E and F the resultant trajectory will ultimately proceedtto a terminal 
dive with no chance of satisfying the endpoint condition Auf = 0. However, 
for values of kbetween values corresponding to the point F and zero, the 
resultant trajectories decrease in length (from infinity) and approach a ver- 
tical trajectory of finite length as 1~ approaches zero (see Figure 4.4). 

The continuous vertical trajectory corresponding to hf; I= 0 is the same 
for all initial flight path angles yl with the same given initial velocity. 
This situation occurs by virtue of the fact that as X 
approaches a unit impulse whose magnitude is such tha e 

approaches zero, t 
vertical flight is 

obtained. 

Trajectories with T/W < 1.5, ul < u,. - The loci of optimal endpoints 
shown in Figure 4.2 were obtained by usizg the methods outlined previously. 
These results are typical for T/W < 1.5 and u1 < uqo Specifically these 
curves are computed for an aircraft with T/W = .5, ul = 1.6 and uq = 1.82. 
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The majority of points in the 5 - q plane are reached optimally by 
following a trajectory which dives initially. Only those points which are 
enclosed in the area bounded by the zero degree locus and the q axis are 
reached optimally by following a trajectory which climbs initially. These 
results are consistent with the nature of the discontinuous solutions. These 
solutions were characterized by starting with a vertical dive, followed by a 
steady climb, and then a vertical climb. This same order of events becomes 
characteristic of the continuous solutions if the trajectories are sufficiently 
long. For example in Figure 4.4 the typical "long" trajectories are character- 
ized by an initial dive which smoothly transforms into a steady trajectory 
with a slope approximately equal to the corresponding locus line. This steady 
portion of the trajectory then smoothly transforms into a climb as the final 
endpoint is approached. Trajectories with endpoints on the upper branch of 
the loci curves which extend to infinity correspond most markedly to the dis- 
continuous trajectories discussed in Section III. As was the case with the 
discontinuous trajectories, these continuous trajectories dive initially to 
pick up a speed near uq before starting on the optimum steady climb. 

A boundary between continuous and discontinuous solutions is drawn and 
labeled in Figure 4.2. Equation(3.10 was used to determine the slope of the 
boundary and equations (3.44) and (3.48) were used to determine the q inter- 
cept point of the boundary. It is noted that continuous solutions with initial 
flight path angles approaching -90° generate loci of optimal endpoints which 
closely follow this boundary. 
-90° case. 

In the limit, this boundary corresponds to the 
Thus above this line solutions are all discontinuous while below 

this line the solutions are entirely continuous. Trajectories with endpoints 
in the neighborhood of the boundary between continuous and discontinuous solu- 
tions and the 11 axis execute a very strong pull-up during the initial portion 
of the trajectory. These have been classed as "zooming" trajectories and a 
typical example is shown in Figure 4.4. 

It is evident that all of the locus curves intersect the q-axis at a 
given critical point. To optimally reach points directly below this critical 
point, an aircraft must climb vertically directly to the endpoint. However, 
to reach point directly above the critical point, the aircraft must dive ver- 
tically until it has attained the velocity uq. Then the aircraft must climb 
vertically to the endpoint. The locus of optimal endpoints corresponding to 
the -90° case is comprised of the boundary locus together with that portion 
of the q-axis between the critical point and the boundary locus. 

Traiectories with T/W < 1.5, ul > uo. - The optimal results shown in 
Figure 4.5 are typical for T/W < 1.5 and ul < uq. Specifically these curves 
correspond to an aircraft with T/W = .5, ul = 2 and uq = 1.82. For any given 
initial flight path angle the locus curves are generated by varying the para- 
meter XSbetween cos yl/ul and a constant > 0 as shown in Figure 4.6. 

Unlike the previous example the locus of optimal endpoints do not double 
back but rather asymptotically approach a straight line which extends to infinity. 
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The value of the multiplier Xs also asymptotically approaches some fixed 
value as an endpoint is moved further and ,further along a given locus. 

pon& 
The boundary between continuous and discontinuous solutions corres- 

to the yl = -t90° case and is identical with the discontinuous boundary 
locusobtained by using equations (3.11)' (3.45) and (3.49). Above this 
boundary, solutions are discontinuous and below this boundary solutions are 
continuous. It is noted in this case that the 5 - 11 plane is more or less 
divided equally between trajectories which are initiated with a dive and 
trajectories which are initiated with a climb. Points above the y1 = 0' 
locus are obtained by following a trajectory which climbs initially and 
points below the y 

A 
= 0' locus are obtained by following a trajectory which 

dives initially. 11 the discontinuous trajectories are reached by initially 
climbing vertically as was shown in Section III. 

As shown in Figure 4.7 the actual trajectories at a distance from the 
origin, below the yl = Oo locus are characterized by an initial dive followed 
by a steady portion of the trajectory which is followed by a climb. Above the 
Yl = O" locus the trajectories are characterized by an initial climb followed 
by a steady portion followed by a final climb. 

Trajectories with T/W > 1.5, ul < u?. - The locus of optimal endpoints 
shown in Figure 4.8 are typical for T/W > 1.5 and ul < usa Specifically these 
curves were computed for an aircraft with T/W = 1.8, ul - 2 and uq = 3.46. The 
predicted difference between the results of this case and the previous two cases 
in which T/W was less than 1.5 is that the k - q plane is completely filled with 
continuous optimal trajectories. The form of the solutions are similar to the 
previous case when ul < uq (T/W e.5). The loci of optimal endpoints are obser- 
ved to double back on themselves. Only a small portion of the 5 - q plane may 
be reached by initially climbing, namely those points which are endlosed in the 
areabounded by the y1 = O" locus and the q-axis. All other points in 5 - q 
space are reached by initially diving. 

Trajectories to high altitudes near the '1 axis start with a steep initial 
dive and then execute a very strong pullup to a steep steady climbing trajectory. 
This manouver picks up a velocity near uq which is optimum for climbing. 

It is noted that the locus curves corresponding to steep initial dives 
followed by climbs to high altitude (yl = -30, -45, -60 and -80) are approx- 
imately straight lines intersecting the q-axis at the point q = 7.25. This 
critical point divides trajectories with endpoints directly overhead into two 
categories. In order to reach points from q = 0 to the critical q value the 
aircraft must climb vertically directly to the endpoint. However, to reach a 
point directly overhead which is above the critical 1 value, the aircraft must 
dive vertically until it attains a velocity of uq from which point it climbs 
vertically to the endpoint. For this special case of endpoints directly over- 
head the continuous solution degenerates into a discontinuous solution. 

Trajectories with T/W > 1.5, ul > uge - The loci of optimal endpoints 
shown in Figure 4.11 are typical for T/W 3 1.5 and ul > uq. Specifically 
these curves correspond to an aircraft with T/W = 1.8, ul * 4 and u 
With ul > uq, the loci of optimal endpoints do not double back on t a 

= 3.46. 
emselves 
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but rather form nearly straight lines which in all cases extend to infinity. 

Because of the high T/W ratio the loci have very little curvature and 
are approximately straight lines passing through the origin. From Figure 
4.13 it is evident that the actual trajectories are also nearly straight lines 
and practically coincide with their corresponding loci. Thus, as might be 
expected the case of very high T/W with ul > uq an aircraft can optimally 
reach any point in 5 - q space by flying almost directly to the endpoint 
along a straight line. 
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SECTION V 

DISCUSSION AND CONCLUSIONS 

The analysis of Section II was restricted to two dimensional motion 
of an aircraft in a uniform gravitational field with thrust and drag given 
as specified functions of altitude and velocity. Under these conditions, 
theoretical considerations show that the form of a minimum time trajectory 
between two points in range-altitude space will in general fall into one 
of two distinctively different categories. Depending upon the location of 
the endpoint, the trajectory will either be continuous with the flight path 
angle given by one control law, or the trajectory will be discontinuous 
with the flight path angle given by yet another control law. It was shown 
in Sections III and IV for a constant thrust aircraft with drag proportional 
to velocity squared that the discontinuous solutions are not obtained unless 
the thrust to weight ratio of the aircraft is less than three halves. Under 
this circumstance , part of the range-altitude space is filled with continuous 
solutions with a common boundary between the two regions. 

Both the continuous and discontinuous solutions are characterized by 
the relation of u to u . The most evident 
discontinuous solttionsqis that if u 

effect of this relation on the 

is a vertical dive and if ul 
1 C uq then the initial subarc trajectory 

vertical climb. 
> uq then the initial subarc trajectory is a 

The most notable effect on the continuous solutions is that 
then the locus curves as shown in Figures 4.2 and 4.8 double back 

This effect is also illustrated in Figure 5.1 where u1 = uq + a. 
the locus curves extend to the right to infinity and with 

curves double back. This effect is explained on the 
the boundary between continuous and discontinuous solu- 

tions must be o - - 90' (an initial vertical dive) whereas if 
u > u this boundary must be obtained as yl+ + 9U" (an initial vertical 
climb)'! 

Even though the model aircraft used in generating the solutions in 
Sections III and IV was elemental in nature, considerable difficulty would 
be experienced in general if a standard trial and error technique were used 
to solve the optimizing equations rather than the flooding technique used here. 
A trial and error method which involves the adjustments of the initial Lagrange 
multipliers in the Euler equations to meet specified end conditions will en- 
counter convergence difficulties. This is partially because the influence of 
the Lagrange multipliers 15 on the location of the resultant endpoint is highly 
non linear. For example in the vicinity of points A and D in Figures 4.3 and 
4.9 and point A in Figures 4.6 and 4.12 a small change in A keeping other 
quantities constant will result in a relatively small chang k in the resultant 
trajectory. However for values of hS in the vicinity of points E and F in 
Figure 4.3 and 4.9 and point B in Figures 4.6 and 4.12 a small change in X 
will result in an exceedingly large change in the resultant trajectory. Ii 
addition, for the value of 1~ = 0 there are an infinite number of optimal 
discontinuous trajectories. The degree of difficulty in applying some trial 
and error technique is a strong function of where the desired endpoint is 
located. 
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Only the gross effects of thrust and drag on the form of a minimum 
time optimal trajectory were considered here with no constraints imposed 
on the possible aircraft motion. It is interesting to note from Figure 
5.2 that the lift coefficients needed to fly all but the zooming type of 
trajectories are within the capabilities of most high performance aircraft. 
Certainly the zooming trajectories and discontinuous trajectories presented 
here can only be approximated in actual practice. If a more realistic model 
aircraft had been used with constraints imposed on the inertial capabilities 
of the craft the resultant trajectories would be rounded somewhat from the 
ones shown here. It has been previously shown by Hong6 that for the time 
to climb problem even the introduction of induced drag will eliminate dis- 
continuous solutions. 
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